• Naso F. and Gandaglia A. Different approaches to heart valve decellularization: a comprehensive overview of the past thirty years. Xenotransplantation 2018;25(1). doi: 10.1111/xen.12354. Epub 2017 Oct 22.
  • Naso F et al. Alpha-Gal inactivated heart valve bioprostheses exhibit an anti-calcification propensity similar to knockout tissues. Tissue Eng Part A 2017;23(19-20):1181-1195.
  • Dettin M. et al. Natural scaffolds for regenerative medicine: direct determination of detergents entrapped in decellularized heart valves. BioMed Research International Volume 2017, Article ID 9274135, 9 pages.
  • Gallo M. et al. The Vietnamese pig as a translational animal model to evaluate tissue engineered heart valves: promising early experience. Int J Artif Organs 2017;40(4):142-149.
  • Aguiari P. et al. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Biomed Mater 2017;12(1):015021.
  • Gallo M. et al. Decellularized aortic conduits: could their cryopreservation affect post-implantation outcomes? A morph-functional study on porcine homografts. Heart Vessel 2016;31(11):1862-1873.
  • Di Liddo R. et al. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells. Int J Nanomedicine 2016;11:5041-5055.
  • Iop L. et al. Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS One 2014 18;9(6):e99593. doi: 10.1371/journal.pone.0099593.
  • Naso F. et al. Implications of Alpha-gal epitopes in bioprosthetic heart valve degeneration. Experimental and clinical cardiology 2014 Volume 20, Issue 6.
  • Martini P. et al. Tissue-Specific expression and regulatory networks of pig MicroRNAome.  PLoS One 2014 3;9(4):e89755. doi: 10.1371/journal.pone.0089755.
  • Naso F. et al. Are FDA and CE sacrificing safety for a faster commercialization of xenogeneic tissue devices? Unavoidable need for legislation in decellularized tissue manufacturing. Tissue Antigens 2014;83(3):193-194. doi: 10.1111/tan.12275.
  • Naso F. et al. Biocompatibility evaluation criteria for novel xenograft materials: distribution and quantification of remnant nucleic acid and alpha-Gal epitope. Journal of Stem Cell Research and Therapy 2013, S6-009. doi: 10.4172/2157-7633.S6-009.
  • Naso F et al. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bio-prostheses. Xenotransplantation 2013;20(4):252-61. doi: 10.1111/xen.12044.
  • Gallo M. et al. Tissue engineered heart valves: intra-operative protocol. Journal of Cardiovascular Translational Research 2013;6(4):660-1. doi: 10.1007/s12265-013-9480-1.
  • Naso F. et al. Wet-priming extracorporeal membrane oxygenation device maintains sterility for up to 35 days of follow-up. Perfusion 2013;28(3):208-213.
  • Samouillan V. et al. Analysis of the molecular mobility of collagen and elastin in safe, atheromatous and aneurysmal aortas. Pathol Biol 2012;60(1):58-65. doi: 10.1016/j.patbio.2011.11.006.
  • Naso F. et al. Alpha-Gal detectors in xenotransplantation research: a word of caution. Xenotransplantation 2012;19(4):215-220.
  • Gandaglia A. et al. Cardiomyocytes in vitro adhesion is actively influenced by biomimetic synthetic peptides for cardiac tissue engineering.Tissue Engineering Part A 2012;18(7- 8):725-736.
  • Cigliano A. et al. Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochemical  Research International 2012;2012:979351. doi: 10.1155/2012/979351.
  • Gallo M. et al. Physiological performance of a detergent decellularized heart valve implanted for 15 months in Vietnamise Pigs: surgical procedure, follow-up and explant inspection. Artif Organs 2012;36(6):E138-150.
  • Gandaglia A. et al. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac Surg 2011;39(4):523-531.
  • Samouillan V. et al. The use of thermal techniques for the characterization and selection of natural biomaterials. J Funct Biomater 2011;2(3):230-248. doi: 10.3390/jfb2030230.
  • Naso F. et al. Differential distribution of structural components and hydration in aortic and pulmonary heart valve conduits: impact of detergent-based cell removal. Acta Biomaterialia 2010;6(12):4675-4688.
  • Naso F. et al. First quantitative assay of alpha-Gal in soft tissues: Presence and distribution of the epitope before and after cell removal from xenogeneic heart valves. Acta Biomaterialia 2011;7(4):1728-1734.
  • Bottio T. et al. The changing hydrodynamic performance of decellularized intact porcine aortic root: considerations on in-vitro testing. Journal of Heart Valve Disease 2010;19(4):485-491.
  • Samouillan V. et al. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques. J Biomed Mater Res A 2010;95(2):611-619. doi: 10.1002/jbm.a.32835.
  • Iop L. et al. The influence of heart valve leaflet matrix characteristics on the interaction  between human mesenchymal stem cells and decellularized scaffolds. Biomaterials 2009;30:4104-4116.
  • Fineschi S. et al. In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. American Journal of Respiratory Cell and Molecular Biology 2008;39(4):458-465.
  • Spina M. et al. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: extracellular matrix structure, prevention from calcification, and cell repopulation features. J Biomed Mater Res A 2003;67(4):1338-1350.
  • Ortolani F. et al. Copper retention, calcium release and ultrastructural evidence indicate specific Cuprolinic Blue uptake and peculiar modifications in mineralizing aortic valves. Histochem J 2002;34(1-2):41-50.